1 Partial Fractions

1.1 Concepts

1. Partial fractions allow us to compute an antiderivative of an expression of the form $P(x) / Q(x)$, where P, Q are polynomials, more easily (these are just fractions where the numerator and denominator are both fractions). First long divide so that the degree or highest term of the polynomial P is less than Q. Then factor $Q(x)$ into linear factors if you can, or else quadratic factors. Then for each factor, write the simplification of the form: | Factor | $a x+b$ | $(a x+b)^{n}$ | $a x^{2}+b x+c$ | $\left(a x^{2}+b x+c\right)^{n}$ |
| :---: | :---: | :---: | :---: | :---: |
| | Expression | $\frac{A}{a x+b}$ | $\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots$ | $\frac{A x+B}{a x^{2}+b x+c}$ |
| | $\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots$ | | | |

Afterwards, find what these constants are. One good way to do this is to multiply everything by $Q(x)$ to clear denominators and then plug in different values of x.

1.2 Examples

2. Find $\int \frac{x^{2}}{x^{2}+3 x-18} d x$.
3. Find $\int \frac{x^{3}+3 x^{2}+3 x+3}{(x+1)^{2}\left(x^{2}+1\right)} d x$.

1.3 Problems

4. True False To find the partial fraction decomposition of $\frac{4 x^{3}}{(x-1)(x+2)^{2}}$, we set it equal to $\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{(x+2)^{2}}$ and solve for A, B, C.
5. Integrate $\int \frac{5 x}{x^{2}-9 x-36} d x$.
6. Integrate $\int \frac{4 x^{2}}{(x-1)(x-2)^{2}} d x$.
7. Set up the partial fraction decomposition of $\frac{8 x^{3}+3 x^{2}+1}{(x-1)^{2}\left(x^{2}+4\right)^{2}}$ (you don't have to solve for the coefficients).
8. Integrate $\int \frac{\sec ^{2}(x)}{\tan (x)^{2}-\tan (x)} d x$.

1.4 Extra Problems

9. Integrate $\int \frac{5 x+17}{x^{2}+2 x-15} d x$.
10. Integrate $\int \frac{2 x^{3}-12 x^{2}+28 x-23}{(x-2)^{2}(x-1)^{2}} d x$.
11. Set up the partial fraction decomposition of $\frac{3 x^{2}+1}{(x-1)\left(x^{2}+4\right)^{2}\left(x^{2}+2 x+2\right)^{2}}$ (you don't have to solve for the coefficients).
